摩登7平台合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 超微量天平应用于粗锡中银含量的分析检测
> 表面张力仪测试添加消泡剂后起泡液、水性丙烯酸胶黏剂的变化(二)
> 硝化纤维素塑化效果与其表面张力的变化规律
> 微流控器件结构对水/水微囊形成过程、界面张力的影响规律(三)
> LB膜分析仪应用:不同初始表面压力条件对VhPLD的磷脂吸附亲和力影响(二)
> 生物表面活性剂产生菌菌体密度、细胞疏水性与发酵液pH及表面张力的关系(二)
> 不同温度和压力对AOT稳定CO2乳液的界面张力影响(二)
> 强紫外线辐射对减缩剂抑制水泥石干缩变形效果研究(二)
> 什么叫界面?基于动态悬滴表征的界面性质精确测定方法
> 诱导期测定法研究NaCl的添加对碳酸锂固-液界面张力等成核动力学参数影响——过饱和度的计算
推荐新闻Info
-
> 影响狭缝间氢键流体气液平衡界面张力的因素有哪些(三)
> 影响狭缝间氢键流体气液平衡界面张力的因素有哪些(二)
> 影响狭缝间氢键流体气液平衡界面张力的因素有哪些(一)
> GA、WPI和T80复合乳液体系的脂肪消化动力学曲线、界面张力变化(四)
> GA、WPI和T80复合乳液体系的脂肪消化动力学曲线、界面张力变化(三)
> GA、WPI和T80复合乳液体系的脂肪消化动力学曲线、界面张力变化(二)
> GA、WPI和T80复合乳液体系的脂肪消化动力学曲线、界面张力变化(一)
> 表面张力实验、接触角实验分析抑尘试剂对煤的润湿结果
> 摩登7表面张力仪研究烧结矿聚结行为
> 基于界面张力和表面张力测试评估商用UV油墨对不同承印纸张的表面浸润性差异(三)
新型聚芴材料螺芴氧杂蒽的X型多层LB膜制备方法
来源:发光学报 浏览 870 次 发布时间:2024-07-10
为了研究聚芴材料DSFX-SFX分子在气液两相表面的行为,分子处于溶液、LB膜及粉末状态的光学特性,以及分子有序排列对其发光特性的影响,制备了聚芴材料DSFX-SFX的X型LB膜,研究了π-A等温曲线,测量了其紫外-可见吸收谱和稳态荧光光谱。结果表明,分子以face-on形式平躺在亚相表面,单分子面积为4.78 nm2。在氯仿溶液中吸收峰位在354 nm,归属于分子中三聚氧杂蒽部分与芴环间π-π*电子跃迁;荧光发射峰位在396,419,445 nm(肩峰),归属于发色团三聚氧杂蒽,是芴环与氧杂蒽环之间的电荷转移。在LB膜中,吸收谱和荧光光谱与其溶液光谱相比,整体红移6 nm。结果表明:在LB膜中,两个分子形成激基缔合物,与单分子状态相比,激基缔合物的HOMO升高而LUMO降低。与粉末状态相比,该材料在LB膜中有很强的荧光发射,表明该材料形成有序排列超薄膜有利于荧光发射。
Langmuir-Blodgett(LB)膜是有机分子有序排列形成的超薄膜。其结构、物理和化学性能能够在分子水平上加以控制,对分子进行排列组合,使得超分子结构及超微复合材料得以组建,在非线性光学材料、分离膜和模拟生物膜等方面具有光明的应用前景[10-13]。本文成功地将一种新型聚芴材料螺芴氧杂蒽制备成LB膜,利用UV-Vis和光致发光(PL)等测试手段,研究了该材料在氯仿溶液中形成LB膜的光谱学特性,分析了分子的有序排列对其荧光特性的影响。
LB膜是在生产的KSV2000单槽制膜系统上制备而成的,制膜的亚相为20℃二次蒸馏去离子水。将化合物以氯仿为溶剂配置成1.023×10-4mol/L的溶液,用微量注射器铺展到亚相表面上。压膜速度为5 mm/min,在15 mN/m恒定表面压下采用水平附着法制备X型LB膜,基板为经疏水性处理的直径为15 mm的石英玻璃。吸收谱及稳态荧光谱的测量分别在日立U-3310型紫外-可见光谱仪和英国Edinburgh Instruments(EI)公司生产的FLS920型荧光光谱仪上完成,荧光光谱的激发光源为450 W氙灯。
不同层数LB膜的紫外-可见吸收谱
研究了一种新型聚芴材料螺芴氧杂蒽2,7-二[2-(3′,6′-二辛氧基螺芴氧杂蒽)]DSFX-SFX的π-A等温曲线,得出分子在基板上可能的排列方式。制备了该材料的X型多层LB膜。对其氯仿溶液和LB膜的紫外-可见吸收谱、稳态荧光及其粉末的稳态荧光进行了测量和分析。研究结果表明,该材料分子能够在亚相表面形成稳定的Langmuir膜,并且能较好地转移到基片上,分子以face-on形式平躺在亚相表面。DSFX-SFX在氯仿溶液中的吸收峰位于354 nm,归属于分子中三聚氧杂蒽部分与芴环间π-π*电子跃迁;荧光发射峰位于396,419,445 nm(肩峰),归属于发色团三聚氧杂蒽,是芴环与氧杂蒽环之间的电荷转移。形成LB膜后,荧光光谱与其溶液光谱相似,整体红移6 nm。这是由于在LB膜中,分子间相互作用加强,两个分子形成激发二聚体,与单分子状态相比,激发二聚体的HOMO升高而LUMO降低的双重作用造成的结果。与粉末状态相比,该材料在溶液及LB膜中都有更强的荧光发射,以LB膜中最强,表明该材料形成的有序排列超薄膜有利于荧光发射,是非常好的一种蓝光材料,可用于有机发光显示器件中。