摩登7平台合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 表面张力仪的传感器是否有保护装置?
> 如何利用全自动表面张力仪判断牛奶的纯度?是否添加添加剂?
> 变温过程渣钢表面张力与界面张力的演变机制
> 降低熔池外沿待破碎液膜区域的表面张力,制备细粒径高氮含量的高氮钢粉末
> JMP软件定制熟化环境的湿度对光伏背板耐候层表面张力影响(一)
> 什么是表面张力?表面张力仪的结构组成、测试过程、校准方法、分类及应用
> DHSO、AGE、TMHC构建阳离子有机硅表面活性剂DAT防水锁性能(二)
> 微量天平的使用方法、样品称量,分析天平按精度分为几级
> 基于LB膜技术制备二氧化硅二维光子晶体薄膜的方法
> 农药雾滴雾化与在玉米植株上的沉积特性研究
推荐新闻Info
-
> St与MMA在无皂乳液聚合过程中的动态表面张力变化——结果与讨论、结论
> St与MMA在无皂乳液聚合过程中的动态表面张力变化——摘要、实验部分
> 低分子热塑性树脂体系CBT500/DBTL的界面张力与温度的关联性(二)
> 低分子热塑性树脂体系CBT500/DBTL的界面张力与温度的关联性(一)
> 不同种类与浓度的无机盐氯化物对麦胚脂肪酶油-水界面特性的影响(二)
> 不同种类与浓度的无机盐氯化物对麦胚脂肪酶油-水界面特性的影响(一)
> 触杀型除草剂与油类助剂防除杂草机理及效果
> 高分子类助剂主要增效机制及在除草剂领域应用机理
> 表面活性剂在除草剂喷雾助剂中应用及主要增效机制
> 气液液微分散体系的微流控制备方法及在稀土离子萃取领域的应用(下)
拉筒法和静滴法测定连铸结晶器保护渣表面张力(一)
来源:当代化工研究 浏览 264 次 发布时间:2024-09-25
1.前言
表面张力是冶金熔渣重要的物理化学性质之一。炼钢过程中的炉渣泡沫化现象、连铸过程中保护渣卷渣、钢渣在结晶器弯月面处发生界面化学反应、保护渣吸收钢中上浮的非金属夹杂物等冶金现象与熔渣的表面张力性能密切相关。因此,熔渣表面张力的测量和预测对于考察熔渣表面张力的演变行为、改善熔渣冶金性能具有重要意义。目前,关于高温冶金熔渣表面张力的预测主要是依据Butler方程建立熔渣表面张力计算模型。Arutyunyan等和Nakamoto等依据Butler方程建立了熔渣表面张力热力学计算模型,通过此模型估算了CaO-Al2O3、CaO-SiO2-Na2O、CaO-SiO2-Al2O3和CaO-SiO2-B2O3等简单的二元和三元熔渣表面张力,但是对于多元熔渣体系,由于多元熔渣结构复杂,熔体中各种离子的存在形式以及分布函数尚不清晰,造成在模型计算的过程中缺乏一些重要的参数。因此,表面张力计算模型在实际冶金熔渣体系中受到一定限制,而对于多元熔渣表面张力的数据获取往往采用实验测定的方法。
实验测定液体表面张力的方法主要有毛细管上升法、差分最大气泡压力法、Wilhelmy盘法、悬滴法、滴体积法、拉筒法和静滴法等。其中,毛细管上升法、悬滴法和Wilhelmy盘法适用于中低温液体表面张力的测定;差分最大气泡压力法和滴体积法操作过程中对实验设备要求苛刻,在高温下不易对熔渣表面张力进行测定;拉筒法和静滴法均是测定高温熔体表面张力较为适用的方法,但由于高温下冶金熔渣的组成以及成分性质不同,使得高温熔渣表面张力的测定变得复杂,因此需根据高温熔渣的组成情况而定。
连铸结晶器保护渣主要以CaO和SiO2为基料,包含碱金属氧化物(Na2O/K2O)和氟化物(CaF2)等氧化物的混合物。保护渣是提高连铸坯质量的重要材料,这主要取决于保护渣的物理化学性能,其中表面张力会影响弯月面的形状以及液态保护渣与凝固坯壳之间的附着力,并进一步影响保护渣的流动速率和渣膜厚度。因此,本文以连铸结晶器保护渣为考察对象,分别运用拉筒法和静滴法测定保护渣表面张力,在测定过程中分析这两种实验方法的应用特点,并考察保护渣表面张力随温度变化的演变行为,从而为提高熔渣表面张力数值精确度、控制熔渣冶金性能、解析复杂的冶金现象提供一些数据和测定技术支撑。
2.拉筒法表面张力测定
参照工业生产用结晶器保护渣的组成和成分,选择CaOSiO2-Na2O-CaF2渣为实验渣,CaO/SiO2质量分数比为1.0,Na2O和CaF2的质量分数分别为15%和20%,如表1所示。采用分析纯试剂CaO、SiO2、Na2CO3和CaF2配制实验样品,其中Na2O的用量由Na2CO3折算而成。实验前,将CaO、SiO2、Na2CO3和CaF2试剂在800℃下焙烧2h,以除去水分及其他杂质。
表1 CaO-SiO2-Na2O-CaF2熔渣组成(质量分数/%)
拉筒法是利用一个垂直中空的圆筒带起液体所产生的拉力与液体表面张力的平衡关系来计算表面张力,如式(1)所示:
式中,σ—熔渣表面张力;mmax—拉起液体的最大质量,在液体即将脱离圆筒的瞬间,即液体对拉筒的拉力与表面张力平衡时,拉力达到最大;g—重力加速度;R—圆筒的半径;C—校正参数,在测量熔体表面张力之前,在室温中需通过测量已知表面张力数值的纯物质(如纯净水)来获取校正参数值,且要多次测量直到参数值达到稳定。在高温下测定熔体表面张力,需选择材质合适的圆筒。圆筒所采用的材质熔点必须高于熔体;为了提高实验测量的精确度,需选择低热膨胀性的圆筒,保证在高温下圆筒不发生变形;圆筒与熔体之间要有一定的润湿性,保证在拉筒的过程中能够带起熔体,同时还要避免熔体与圆筒之间发生化学反应。在本实验中,圆筒的材质为金属钼,为了降低钼的热膨胀性,采用质量分数为99.999%的高纯钼。另外,圆筒的尺寸也是影响熔体表面张力数值精确度的重要因素之一。采用尺寸过大的圆筒,会延长达到圆筒与熔体热平衡的时间;采用尺寸过小的圆筒,在高温和通气的条件下易受到热气流的影响。在本实验中,圆筒的半径为6.5mm。
采用拉筒法测定熔渣表面张力需借助高温熔体物性综合测定仪。该设备主要包括高温炉、电子天平(精度为0.001g)和温度控制及数据采集系统。熔渣表面张力测定过程如下:将分析纯试剂CaO、SiO2、Na2CO3和CaF2按照成分配比分别进行称重并充分混合均匀;将混合试剂放入高纯石墨坩埚(质量分数为99.99%);将高纯石墨坩埚放入到高温炉的恒温区内;常温下多次测量纯净水的表面张力值,数值达到稳定后,将数值代入到式(1)中获取校正参数值C;通入保护性气体高纯氩气(防止石墨坩埚和石墨套筒被氧化);以5℃·min-1的升温速率进行升温,升至设定温度后保温1h;待渣样充分熔化后,放入一个垂直中空的钼圆筒,将钼圆筒与熔渣液面水平接触,60s后将拉筒平稳且缓慢地拉离熔渣表面;读取带起液体的重量最大值,并根据式(1)计算熔渣的表面张力。熔渣实验结果如图1所示。